

SIM Lite Astrometric Observatory

Double Blind Search for Earths -4

IMPLICATIONS:

1. Astrometry — Imaging Synergy

Astrometry of Exoplanets

- At SNR~6 an astrometric orbit gives Period +/- ~ 3%
- Error looks like an arc (see figure below)
- The phase error is ~0.25 rad at mid-epoch of the SIM Lite mission. To extrapolate to a later date:
 - $-P_{err}(T) \sim RSS(0.25, T*3\%*2p)$
 - $-\sim 1$ radian @ T = 5 yrs
- When to look:
 - -At T = 0 range is +/- 14 days
 - At T = 5yrs range is +/- 58 days
 - An astrometric orbit + 1 image of the planet 5 years later greatly decreases the orbital phase uncertainty (by almost 10X).

Imaging of Exoplanets

- There will be many planets; only a few will be Terrestrial (T) in the Habitable Zone (HZ).
- A precise planet orbit can be obtained by:
 - 4 images of the planet (3 to get orbit, 4th confirms all 4 images are of the same planet). 4 images of the planet will take ~12 images for Inner Working Angle (IWA)
 ~ 0.7R_{max}, or...
 - Astrometry + 2 images of the planet. Requires 4-5 images for Inner Working Angle \sim 0.7 R_{max}
- If η_{Earth} ~ 10% it is necessary to observe many stars many times to verify the planets are not T/HZ planets.
 - Reduce the number of images by ~30X if $\,\eta_{Earth}$ ~ 10% and ~10X if $\,\eta_{Farth}$ ~30%.
- Astrometry informs us where we do and don't need to look for T/HZ planets. When IWA $\sim 0.7^*$ R_{max} Earth is observable 32% of its orbit. The brightness of a planet with constant albedo varies by 3X over orbit. 3X albedo variation is $\sim 10X$ brightness change.

Astrometric Orbit Error

Blue – mid-epoch ($\sigma_r \sim 0.03$ AU), ($\sigma_\Theta \sim 0.25$ radians)

Green – 5 years after mid-epoch

2. SIM Lite Search Space

• SIM Lite will find Earth-Analogs around nearby Sun-like FGK stars.

